skip to main content


Search for: All records

Creators/Authors contains: "Ledesma, José L. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Headwater streams are control points for carbon dioxide (CO2) emissions to the atmosphere, with relative contributions to CO2emission fluxes from lateral groundwater inputs widely assumed to overwhelm those from in‐stream metabolic processes. We analyzed continuous measurements of stream dissolved CO2and oxygen (O2) concentrations during spring and early summer in two Mediterranean headwater streams from which we evaluated the contribution of in‐stream net ecosystem production (NEP) to CO2emission. The two streams exhibited contrasting hydrological regimes: one was non‐perennial with relatively small groundwater inflows, while the other was perennial and received significant lateral groundwater inputs. The non‐perennial stream exhibited strong inverse coupling between instantaneous and daily CO2and O2concentrations, and a strong correlation between aerobic ecosystem respiration (ER) and gross primary production (GPP) despite persistent negative NEP. At the perennial stream, the CO2–O2relationship varied largely over time, ER and GPP were uncorrelated, and NEP, which was consistently negative, increased with increasing temperature. Mean NEP contribution to CO2emission was 51% and 57% at the non‐perennial and perennial stream, respectively. Although these proportions varied with assumptions about metabolic stoichiometry and groundwater CO2concentration, in‐stream CO2production consistently and substantially contributed to total atmospheric CO2flux in both streams. We conclude that in‐stream metabolism can be more important for driving C cycling in some headwater streams than previously assumed.

     
    more » « less